

The MAAT Project – Multibody Advanced Airship for Transport

General Introduction

The Consortium

Project Leader:

Università degli Studi di Modena e Reggio Emilia

The University of Hertfordshire Higher Education

Southern Federal University

Engys Ltd.

Alma Mater Sudiorum – Università di Bologna eDL S.A.

Universidade da Beira Interior

LogisticNetwork Consultants GmbH

Politecnico di Torino

University of Lincoln

Aero Sekur S.p.A.

Vrije Universiteit Brussel

.

The Consortium - Roles

Project Leader:

Coordination & Overall System Design

Flight Mechanics and PV Coverage

Controls and Telecommunications

CFDs Flight Mechanics

Overall System Design

Cabins, Cargo and Transfer Systems

Energy and Propulsive Systems

Dissemination and Logistics

Energy and Propulsive Systems

Energy and Propulsive Systems

Cabins, Cargos and Transfer Systems

Cruiser/Feeder Docking and Joints

Current Situation in Transport

Today, Transport of people and freight is characterized by critical conditions such as ...

- the emission of green house gasses,
- the consumption of fossile fuels,
- increasing transport costs related to fuel prices and to costs for environmental impacts,
- high costs for the construction and maintenance of transport routes (train, motorways, airports),
- Additionally, classic transport systems are facing an increasing number of people wishing to travel.

Current Situation in Transport

... these aspects inevitably result in:

- Traffic congestion,
- Large consumption of soil for new infrastructure-related projects,
- Noise pollution (cars, trains, aircraft),
- Increasing costs,
- Increasing emissions of greenhouse gasses.

Therefore, a new mode of transport both economically and ecologically attractive - is necessary.

One answer to the manifold problems faced by modern society is the MAAT Project.

What is MAAT? Key features

MAAT is a ...

- ... zero emission,
- ... low cost,
- · ... high capacity and
- ... flexible aerial transport solution conceptualized as a cruiser/feeder system for
- … long and
- ... middle range distances.

How is MAAT composed?

7

The MAAT system is composed by three modules:

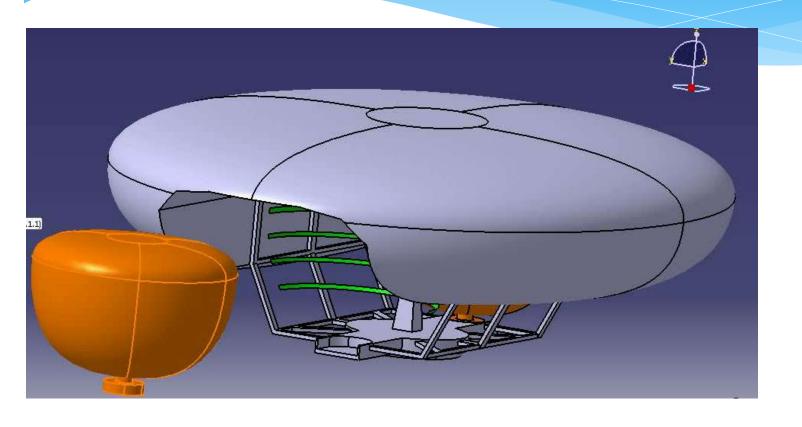
- PTAH (Photovoltaic Transport Airship for High-altitudes) is a heavy payload and high quote cruiser which remains airborne on stable routes;
- ATEN (Air Transport Efficient Network feeder) is a VTOL feeder airship by gas buoyancy linking the cruiser to the ground;
- AHA (Airship Hub Airport) is a new concept of low cost vertical airport
 hub joinable by ATEN, easy to build both in towns and in logistic
 centres.

The Cruiser/Feeder System

Number of passengers: approx. 300

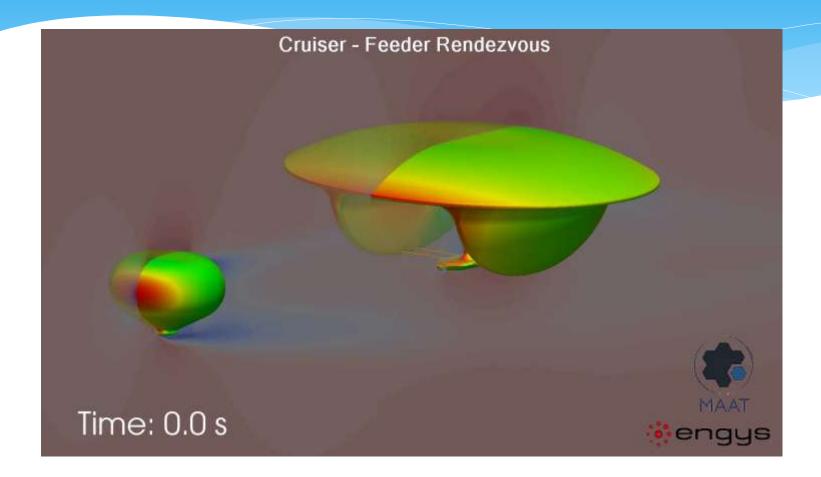
Capable of landing in urban, densly populated areas.

Although limited in speed, the "airborne" exchange of passengers and goods via the feeders allow reduced transport times.


Cruiser: PTAH (Photovoltaic Transport Aerial High Altitude System)

Feeder: ATENs

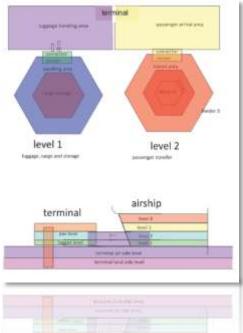
Docking Operation Animation



- (

Docking operation simulation

Airship Hub Airport (AHA)



11

Layout of an AHA:

Examples of an Airship Hub Airport (AHA).

No soil consumption is necessary, as already existing facilities can be used (landing on skyscrapers, railway stations etc.).

Moving times for passengers will be reduced.

VTOL ground operations (Vertical take-off and landing).

What is the MAAT-Project aiming at in scientific terms?

2

- 1. Identify and design the most functional cruiser/ airship architectures based on a discoid innovative airship able to remain airborne for long periods of time and to travel great distances.
- 4. Design the best procedure of **docking operations** in order to obtain the minimum disruption to passengers and the maximum safety for themselves and for goods.

2. Design the **best type of propulsion** both for cruiser and
feeder so they can contribute
together to the propulsion of an
innovative modular airship.

5. Study the different possible ways of approaching and joining between ATEN and PTAH, and consequently the release of ATEN from PTAH.

3. **Minimizing environmental impacts** by annulling fossil fuels energy consumption as both cruiser and feeder are energetically autonomous.

Alternative Configurations

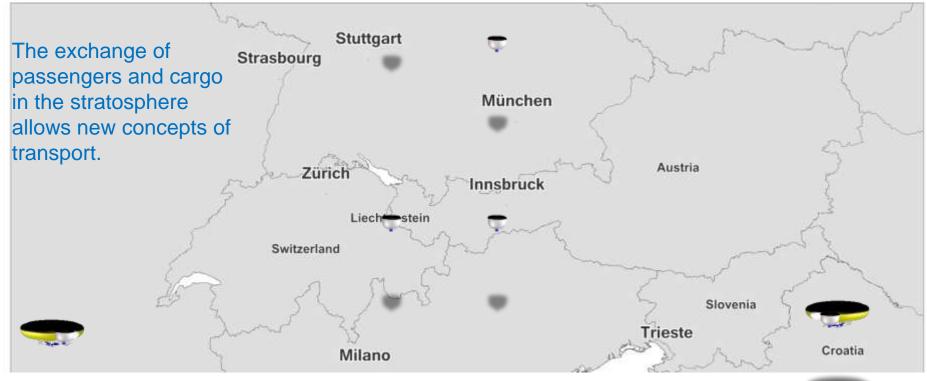
13

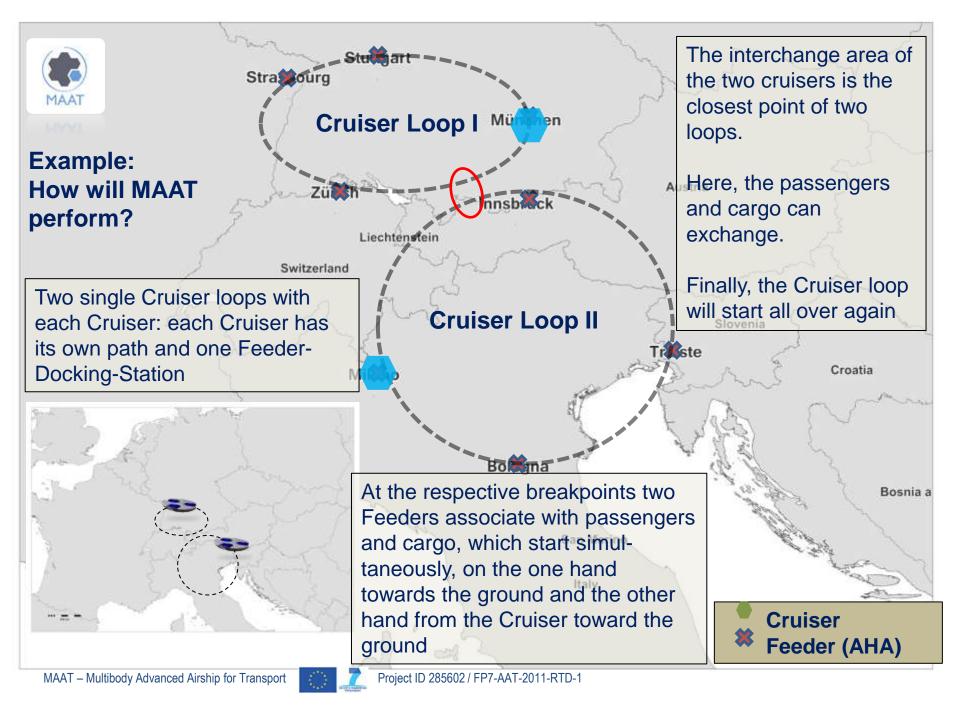
How will MAAT perform?

14

The cruiser constantly remains in the stratosphere (15 km height), only the feeders reach the earth's surface.

Exchange of feeders between 2 cruisers take place in motion!




New transport networks

16

MAAT allows for new chains of transport

4.0

Aircraft name	B747-8	B777-300	A340	A380	MAAT	Units
Selling price	317	284	275	375	400	mln. USD
Passengers	467	365	380	525	510	Number
Empty weight (no fuel)	186	168	246	277	500	Ton.
Max range	14.8	14.7	14.4	15.2	20000	km*10 ³
Service ceiling	13.7	13	12.5	13	16	km.
Max fuel capacity	64.2	47.9	43.1	85.5	0	US gal*10³
Fuel price	4	4	4	4	0	USD/US gal
Fuel consumption for 1 km	15.6	11.7	10.8	20.2	0	I/km
Average cost for km	16.5	12.4	11.4	21.4	0	USD/km
Average cost for passenger and km	3.71	3.57	3.16	4.28	0	10 ⁻² USD/(pass* km)
Other costs	3.5	3.5	3.5	3.5	4	10 ⁻² USD/(pass*km)
Total costs	7.21	7.07	6.67	7.78	4	10 ⁻² USD/(pass* km)
Lifetime	50	50	50	50	100	Hours*10 ³
Annual cost	74	56	55	90	24	mln. USD

Operative Conditions of MAAT

19

Dimension of Cruiser: 70 m height, diameter 350m

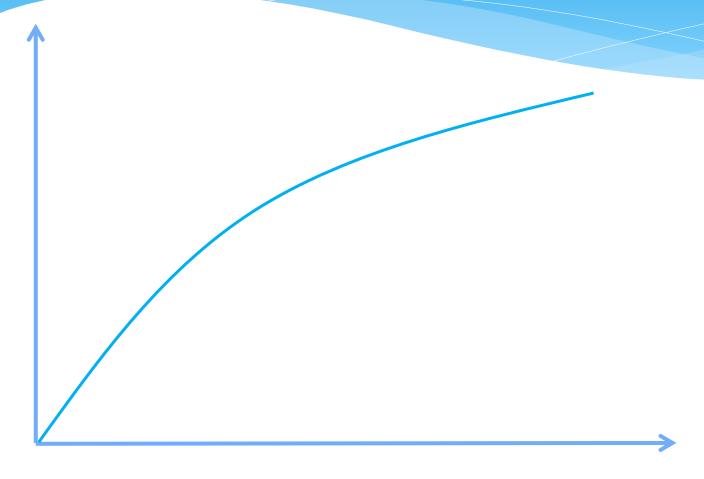
Speed: approx. 200 km/h in calm air

Altitudes: 13 - 17 km

Annual Costs: 24 million US \$ (estimated)

Lifetime: 10 Years (estimated)

Maximum Range: 20 million km


Empty Weight: 500 tons

Comparison with other Means of Transport - Speed

20

Comparison with other Means of Transport - Fuel Consumption

Energy Requirements and Environmental Impact

22

The most significant advantage of the MAAT system is that it is **energetically self-sufficient**.

Daytime: the photovoltaic system produces hydrogen and oxygen.

If properly sized, the energy system allows for a practically 24/7-operation.

The Strengths of the MAAT Concept at a Glance

23

VTOL Ground Operations (Vertical Landing)

Operative altitudes higher than traditional civil routes

Heavy payload, low cost of transportation and nonstop flight

Possibility to act as a flying integrated logistics centre

Self sufficient by photovoltaic propelling system

Silent landing and take-off operations

Reduced consumption of soil, no fossile fuels

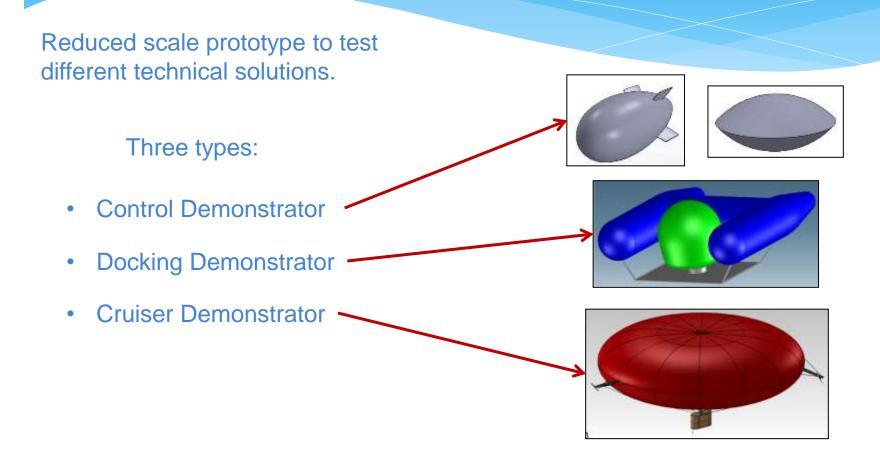
Intended Demonstration of MAAT



24

A number of model airships will be built for demonstration purposes.

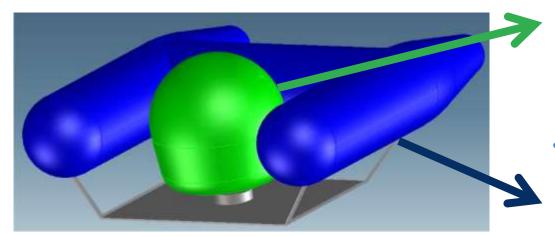
Targets:



- Testing of long enduranceTesting of
- Docking/undocking operations
- Testing of Materials
- Testing of Control Systems

Intended Demonstration of MAAT

Control system demonstrator



00

27

- A muffin shape Feeder (green) very similar to the possible full scale Feeder's shape
- A horseshoe shape
 Cruiser (blue) which allow
 the docking manoeuvre
 both from front and from
 top

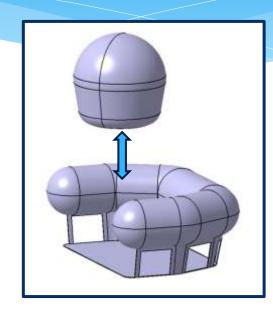
Demo feeder

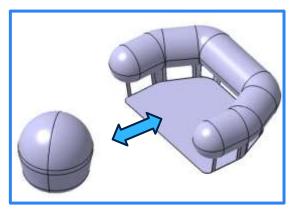
Inverted truncated cone shape surmounted by a hemisphere. Cone radius ratio to maximize the volume: 0.85.

Two possible rigid structure to hold the payload:

- Single vertical element
- Four elements

Two possible type of payload's shape:


- Rectangular
- Round


Demo docking system

Two possible procedures:

- 1. Horizontal operations: both cruiser following feeder or feeder following cruiser.
- 2. Vertical operations: feeder over cruiser (with feeder moving in the cruiser downward).

Horizontal rendezvous can be done also in movement while vertical rendezvous operations require to be performed only in static hovering conditions. 29

MAAT

Cruiser demonstrator

- Discoid airship with engines mounted on the balloon in an external position, on the vertices of an ideal circumscribed equilateral triangle.
- A lower cabin suspended by ropes and a central vertical column are adopted to lower the centre of mass of the system as much as possible.
- This technical choice is conceived to increase the intrinsic stability of the system.

Material	Application	Unit weight
Polyurethane, Nylon ripstop	Balloon	50 - 170 g/m ²
ABS, carbon fiber, epoxy resin, balsa, aluminum	Nacelle and structure	70
Hydrogen	Buoyancy	0.09 kg/m ³

Specifications	Unit
weight	310 Kg
Volume	310 m ³
Height	6 m
diameter	12 m

MAAT

Time Schedule

August 2012:

- preliminary mathematical models
- energetic system evaluation
- preliminary design of cruiser/feeder propulsion system
- preliminary analysis of cruiser/feeder engagement/disengagement

August 2014: Demonstration of prototype models. Project End.

Feb. 2013:

Preliminary design of:

- telecommunications
- position control systems
- control system hardware

Detailed studies of:

- safety systems
- design of pressurization system

September 2012: Project Start

The Work Package Structure

WP2 Overall **System** WP9 Design Dissemi-WP3 nation **Flight** of MAAT Mechanics Results WP8 WP4 WP1 Concept **Energy and Testing and Project Management Propulsive** Demonand Coordination **Systems** stration WP 7 WP5 Cabins, Controls Cargos and and WP6 Transfer Telecommu-Cruiser/ **Systems** nications Feeder **Docking**

and Joints

16.10.2013

A project within the Seventh Programme "MAAT – Multibody Advanced Airship for Transport"

Theme [AAT.2011.6.3.-1 AAT.2011.6.2.-1], GA 285602, co-funded by the European Union.

Contact

Prof. Antonio Dumas Università degli Studi di Modena e Reggio Emilia antonio.dumas@unimore.it www.eumaat.info

